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Methods for  the preparat ion of porphyrins through 1-methyl -19- formyl (H}-b i l -b-enes  and 
l , m e t h y l - 1 9 - H - b i l a - a , c - d i e n e s  are  examined. Pr incipal  attention is directed to a discussion 
of the effect of e l ec t ron-accep to r  substituents on the formation of open polypyrrole  compounds 
and cycl izat ion of the lat ter  to porphyrins .  

Synthetic studies of porphyrins are  ca r r i ed  out by means of investigations of the biosynthesis and ca ta-  
bol ism of these compounds [1-5] in o rde r  to ascer ta in  the mechanism of the action of chromoprote ides  [6, 7] 
and to crea te  biologically active substances [8]. Porphyr ins  and thei r  metal  complexes are  studied extensively 
both within a theoret ical  f r amework  [9] and in o rde r  to a r r ive  at pract ical  applications of them [10-12]. In 
par t icular ,  porphyrins are  used as ma rke r s  in geochemis t ry  in the determination of the level of life onthe earth 
in various h is tor ica l  epochs [13, 14]; they are  detected in meteor i tes  and on the moon 's  surface [15]. 

The development of the synthesis  of porphyrins began with the fundamental r e s e a r c h  of~the F ischer  
school [16]. The culmination of tbis r e s e a r c h  was the synthesis of heroin. Despite the low yield of the final 
product (0.1%), this event was an important  advance in synthetic organic chemis t ry .  Of the later  studies, one 
should undoubtedly note the total synthesis of chlorophyl1 a ,  accomplished by Woodward [17] in 1960. 

At present ,  methods that include the synthesis of intermediate "linear" t e t rapyr ro le  compounds a re  
among the most  successful  of the various methods for  the preparat ion of porphyrins .  Molecular models show 
that such s t ruc tures  exist in a spira l  loop conformation due to repulsion of the adjacent fl substituents [18]; 
the ex t reme A and D pyrrole  r ings prove to be drawn together  in this case, and this is an important factor  in 
the case  of closing to form macrocyc l i c  compounds. Depending on the oxidation state of the t e t rapyr ro le  com-  
pounds, the exis t ing methods can be divided into two principal groups.  The f irs t  group includes the synthesis 
of bilene s t ruc tures ,  and the second group includes the synthesis of biladiene s t ruc tures .  Within each of the 
above-indicated groups,  individual methods are  in turn distinguished by the modes of construct ion of the poly- 
pyrrole  chain and also by the presence  of various substituents in the 1 and 19 positions. The lat ter  c i r cum-  
stance to a considerable  degree determines  the method of cyclization of the bilenes and biladienes to porphyrins .  

Despite undoubted advances, the synthesis of complex porphyrin s t ruc tures  and, in part icular ,  porphyrins 
with e lec t ron-accep tor  substituents has been fraught up to now with cer ta in  difficulties [19]. A number of r e -  
views devoted to r e sea rch  on porphyrins has been published in recent  years  [18, 20-24]. However, these r e -  
views usually encompass a broad range of problems,  and this does not make it poss ib le  to cons ide ra l l  of the 
available studies in detail. The aim of the present  review was a discussion of the resul ts  of a portion of our 
studies on the synthesis of porphyrins .  We deliberately limited our examination of methods for the p repara -  
tion of porphyrins ,  singling out a group of syntheses through linear t e t r apyr ro le  compounds, inasmuch as this 
method enabled us to solve some difficult problems in the synthesis of porphyrins .  

S y n t h e s i s  o f  P o r p h y r i n s  t h r o u g h  1 - M e t h y l - 1 9 - f o r m y l ( H ) - b i l - b - e n e s  

In developing this method we proceeded f rom the fact that a symmet r i ca l  dipyrrole  s t ructure  (dipyrrolyl-  
methene C-D in porphyrin molecule 1) can be isolated in most  natural  porphyrins of the protoporphyrin 
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IX* and coproporphyr in  III types .  We the re fo re  decided to rea l i ze  synthesis  of b t l - b - e n e  on the bas i s  of 
d ipyr ro ly lmethane  f r agmen t s  A-B and C-D. Symmet r i ca l  d ipyr ro ly lmethanes  2a [26] and 2b [27, 28] we re  
the key  compounds in our method fo r  the  p repa ra t ion  of porphyr ins  through b i l - b - e n e s  [29]. 

R 1 CH 3 

c~~ R2 .... R'CHs~O P CH3R' C"SQN " 
C H 3 ~ C H  3 H H H 

2 a ,  b 3 

COOH COOH 2 a R'=m b e ,~c ,o ;  P=CII2CH2COOCI.I a 

l 

The mos t  compl ica ted  p r o b l e m  in the p repa ra t ion  of d ipyr ro ly lmethane  2a was decarboxylat ion of 
the cor responding  5 ,5 ' -d ica rboxyl ic  acid.  Only s t r i c t  obse rvance  of the reac t ion  conditions makes  it pos-  
sible to obtain 2a in high yield; if such conditions a r e  not observed,  the d tpyr ro ly lmethane  undergoes  de-  
composit ion,  and the chief product  is py r ro l eca rboxy l i c  acid 3. 

Dipyr ro ly lmethanes  of the 6 type,  which a r e  cons iderably  m o r e  acces s ib l e  than the cor responding  
a , a ' - u n s u b s t i t u t e d  de r iva t ives  [30], were  se lec ted  as the second d ipyr ro le  f r agmen t  (A-B}. 

CH 3 R 2 CH 3 R 3 CH 3 R 2 CH$ R 3 

C2HsOO c CH 3 R CH 3 
H H H H 

5 6 a - c  

4--6 R2=Et, CH2CH2COOCHa, CH=CHCOOH, Ac, COEt, COBu, COBu-i, COPh, 
COClsHal; Ra=H, Me, Et, CH=CH2COOCHa, CH=CHCOOH, Ac, CH~CH=NEt2, 6 a R I=H; 

b R ~=cHO; c R~=COOEt 

Compound 6c (R 2 =R 3 =Ac) and the i somer i c  d ipyr ro ly lmethanes  were  p r e p a r e d  by heat ing ~ - c h l o r o -  
me thy lpy r ro l e  4 with pyr ro le  5 in alcohol [31]. A number  of d ipyr ro ly lmethanes  6c (R 2 =acyl ,  R 3 =alkyl) 
was  obtained by re f lux ing the  reagents  with t r i e thy lamine  in ch lo ro form [32, 33]. In the case  of 6c (R 2 =Et,  
R 3 =Ac) be t t e r  r esu l t s  a re  obtained when ace toxymethyl  der iva t ive  4 (X =OAc) and pyr ro le  5 a r e  heated in 
aqueous alcohol [34]. Dipyr ro ly lmethanes  6c (R 2 = R 3 = P and R 2 = R 3 = CI-I = CHCOOH) were  obtained f rom 
acetoxymethyl  der iva t ive  4 and py r ro l e  5 in d imethy l fo rmamide  (DMF) [28]. No difficulties a re  usual ly 
encountered in the convers ion  of the resu l t ing  d ipyr ro ly lmethanes  to the cor responding  c~-unsubstituted 
compounds and formyla t ion  of the la t te r .  

In our  d iscuss ion  of the synthesis  of d ipyr ro ly lmethanes  it would be pa r t i cu la r ly  des i r ab le  to dwell 
on two ins tances .  The f i r s t  is a s soc ia ted  with the p repa ra t ion  of d ipyr ro ly lmethanes  that  do not have s t a -  
bi l izing e lec t ronegat ive  groups and, because  of this ,  a re  e x t r e m e l y  labile.  With this end in mind, we used  
the access ib le  d ipyr ro ly lmethenes  7a,b [30], which were  reduced with sodium borohydride .  This method 
can be used fo r  the p repara t ion  of ~-unsubs t i tu ted  d ipyr ro ly lmethanes ,  although the pr inciple  product  
usual ly  contains a smal l  amount of p y r r o l e s .  For  this reason ,  d ipyr ro ly lmethene  carboxyl ie  acid 7c, which 
is in turn  obtained in p rac t ica l ly  quanti tat ive yield [16], was subsequently reduced.  The yield of 8c was 
88%. The access ib i l i ty  of the s ta r t ing  d ipyr ro ly lmethenes  and the i r  e a sy  reduct ion with sodium borohy-  
dr ide makes  it poss ible  to hope that this method will find applicat ion in the synthes is  of  a lkyl -subs t i tu ted  
d ipyr ro ly lmethanes  [35]. 

R ? R 3 CH 3 C2H5 R ~ R 3 CH 3 C2H 5 

R H 3 R ~ CH3 
H H H H 

7 a-c 8 a-c 

7, 8 a Rl=Br; R2=CHa; Ra=C2H~; b Rt=H; R2=C~Hs; Ra=CHa; c RI=COOH; R2=CH~; 
R ~ = C~H5 

*The nomencla ture  proposed  by H. F i s che r  [16] is used fo r  porphyr ins  in this  review,  whe reas  the IUPAC 
s y s t e m  [25] is used for  po lypyr ro le  compounds.  
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TABLE 1. Porphyr ins  Synthesized through Bi l -b-enes*  

Porphyrin 

2-Ethyl-4-acetyl- . 

deuteroporphyrin IX 
2-Acetyl-4-ethyl- 

d euteroporphyrin tX 
Diacetyldeutero- 

porptiyrin IX 
Mesoporphyrin IX 
Protoporphyrin IX + 
2,4-bis(1 -hydroxy.-2- 

carbomethoxyethyl). 
deuteroporphyrin IX 

Starting dipyrrolylmethanes 
2 6 

RI 

CHO 

CHO 
H 
CHO 
CHO 

R 1 

CHHHO 
COOH 
COOH 

R 2 J R 3 

Et [Ac 
Et Ac 
Ac Et 

Ac Ac 
Ac Ac 
Et Et 
CH =Cttl CH=CH 

COOII COOH 

Vari- 
ai1t Yield, % 

26 
28 
II 

3,3 
9,5 

26 
5,0+6,7 

* All of the porphyrins presented in this table are the dimethyl 
e s t e r s .  

The second instance involves the synthesis of 3-acyld ipyrro ly lmethanes .  As a result  of in t ramolecu-  
lar  condensation, d ipyrrolylmethanes  of this sor t  in acidic media  are  rapidly converted to 6H-pyr ro lo-  
[3,2-f]indolizines (9) [36, 37]. A s imi la r  react ion was observed in the dipyrrolylmethene ser ies  [38]. 
Pyrroloindol iz ines  9 constitute a new class  of heterocycl ic  compounds and are  of undoubted interest  [39]. 

R 1 ~ _2 
CH - - n  ~ R 3 

N X-  
9 

In developing a method for  the preparat ion of porphyrins [40] we s tar ted f rom the fact that b i l -b-enes ,  
in contras t  to b i l -a -enes  and b i l - c -enes  [41, 42], a re  sufficiently flexible sys tems .  In addition, the p res -  
ence of a methyl  group in the 1 position and of hydrogen or  a formyl  group, which can be split out [43], in 
the 19 position makes it possible to close this sys tem to a porphyrin.  In o rde r  to facili tate the cyelization 
we used copper sal ts .  It might have been expected that the formation of a bilene complex with divalent 
copper  ions would facili tate the drawing together  of the extreme pyrro le  r ings [44, 45], and, in addition, 
Cu 2+ may act as an oxidizing agent. 

In the f i rs t  synthetic variant (A) we used aldehyde 2b and unsymmetr ica l  dipyrrolylmethane 6a. In 
the second variant  (B) dipyrrolylmethanes  2a and 6b were condensed (Table 1). 

It is expedient to examine the peculiari t ies  of this method in the case of 2 -e thy l -4-ace ty ldeute ropor -  
phyrin IX [34]. In this case  the key moment  in the synthesis is condensation of the s tar t ing dipyrrolyl -  
methanes.  Of the various fac tors  involved (the rat io of the dipyrrolylmethanes,  dilution, o rder  of addition 
of the minera l  acid, tempera ture ,  etc.) the chief factor  is the amount of acid used (or, more  precisely,  its 
concentration).  When the condensation is ca r r i ed  out via variant A in methanol with HBr, the yield of bil-  
ene 10b initially increases  as the amount of acid is increased,  reaching 75% when 30% excess acid is p res -  
ent, af ter  which the yield decreases  smoothly (63% when a fourfold excess is present  and 56% when a 20- 
fold excess is present) .  

R ~ CH3 R 2 CH. 

CH 3 R 3 CH 3 R 3 

/ . . . . . . .  CH 3 
�9 ~ + R I = 2a,b + 6a,b ~(~r-~H HN---~ RI 

ell3 ~ ~ - -  CH3 St'- C H 3 ~ C H 3  

p ,o p p 
lO a, b 11 

IO a RI=H} b R2:CHO 

It was shown that d ipyr r ro ly lmethanes  can be condensed both to b i l -b-enes  and to side product hexa- 
pyrrodiene  12a. In contras t  to the bilene, the yield of the lat ter  increases  as the excess  amount of the acid 
increases  (42% in the case of a 20-fold excess of HBr). 
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The simultaneous formation of bilene and hexapyrrodiene is evidently due to react ion between bilene 
and the as yet unchanged dipyrrolylmethane 6a. In fact, when a 25% excess of 2b is used, the yield of bilene 
increases .  This sor t  of method o~ ca r ry ing  out the condensation seems  of  interest ,  inasmuch as, in addi- 
t ion to increas ing the yield of bilene, it r e s t r i c t s  the format ion of hexapyrrodiene,  which gives a mixture 
of various porphyrins in the next step, hindering isolation of the desi red porphyrin.  

R 3 CH 3 R 2 all, 3 CH 3 P P CH 3 CH 3 R 2 CH 3 R 3 

H H H H H H 2Br" 
;2 a - e  

1 2  a R -~ = C2H~, R ~ = Ac ;  b R 2 = R 3 = Ac :  c R = = CO2C2Hs ,  R 3 = Ac ;  d R 2 = R 3 = P ;  e R = = R 3 = C~Hs 

The cycl izat ion of bilene 10b (R 2 =Et, R 3 =Ac) was ca r r i ed  out in methanol with acetic acid in the p res -  
ence of copper acetate.  The yield of the copper complex of the dimethyl es ter  of 2 -e thy l -4-ace ty ldeu te ro-  
porphyrin IX (11, R 2 = Et, R 3 =Ac) was 39%, and other porphyrins were not detected. 

In a preparat ive respect ,  it is more  advantageous to synthesize the porphyrins direct ly  f rom di- 
pyrrolylmethanes  without isolation of the bilencs.  In the f i rs t  case (variant A) when a small  amount of 
HBr was used, the yield of the des i red  products was 27%, as compared  with only 6% in the case  of a high 
acid concentrat ion (the react ion mixture also contained a number  of porphyrins) .  In the second case  (B) 
the formation of hexapyrrodiene 12a was not observed,  and the yield of porphyrin reached 28%. The con- 
vers ion  of 19-unsubstituted bilene 10a to hexapyrroldiene 12a evidently proceeds more  slowly than the c o r -  
responding react ion with 19-formylbi lene 10b. The different react ivi t ies  of the bilenes are  associa ted with 
the fact that the c~-unsubstituted position in bilene 10a is somewhat deactivated because of the effect of the 
conjugated dipyrrolylmethene s t ructure ,  whereas this effect is not observed in the case  of 19-formylbilene.  

In o rde r  to ascer ta in  the effect of the position of the acetyl  group in the dipyrrolylmethane on the 
formation of bilene and cyclization of the latter to porphyrin we synthesized an i somer ic  porphyrin - 2- 
ace ty l -4-e thyldeuteroporphyr in  IX (11, R 2 =Ac, R 3 =Et) [46]. Considering what was stated above, it would 
be more  expedient to synthesize this porphyrin by method B. However, we were unable to introduce a 
formyl  group into a-unsubst i tu ted dipyrrolylmethane.  Inthe presence  of acid reagents dipyrrolylmethane 
is converted to pyrroloindolizine 13. 

CH3 H CH 3 
CH3 ~ . _ . ( ~ N  ~ ,  C2H5 

H X -  

13 

The synthesis of the porphyrin was therefore  accomplished only via variant A. The lability of 6a 
(R 2 =Ac, R 3= Et) required thorough checking of the reaction conditions. Best resul ts  were obtained when 
the condensation was ca r r i ed  out in acetic acid with a smal l  amount of acetic anhydride [47] and a fourfold 
excess of hydrobromic  acid. In this case  hexapyrrodiene is not formed even at high HBr concentrat ions.  
An increase  in the react ion t ime leads to the formation of coproporphyrin .  The oxidative cyclizat ion of 
bilene gave 2-ace ty l -4-e thyldeuteroporphyr in  IX in 11% yield. As seen f rom this synthesis,  the presence  
of an acetyl group in the pyrrole  ring adjacent to the methene bridge of b i l - b ' ene  considerably hinders the 
preparat ion of the porphyrin.  

We also synthesized a porphyrin with two electronegative groups.  We used diacetyldeuteroporphyrin 
IX as the subject [29, 48]. This choice was due to the fact that this compound is an intermediate in the 
preparat ion of hemato-  and protoporphyrins  IX [49, 50]. In the course  of our r e s e a r c h  diacetyldeutero-  
porphyrin was synthesized in [51] ext remely  low yield on the order  of 0.1% based on the s tar t ing d ipyrro lo-  
methenes.  

Diacetyldeuteroporphyrin IX has been synthesized by two methods [27, 52]. Bet ter  resul ts  are  ob- 
tained by variant  B. A study of the two processes  made it possible to conclude that the principal differ-  
ence is associa ted with the formation of the corresponding bil-b--enes. When aldehyde 6b (R 2 =R 3 =Ae) was 
used, the yield of the bilene was close to quantitative. At the same time, the bilene is formed only in in- 
significant amounts in variant  A. These resul ts  were also obtained at low HBr concentrat ions and when a 
large excess of HBr was present .  Just  as in the previously considered synthesis [46], hexapyrrodiene i snot  

252 



fornied in the case of variant  A. On the other hand, an increase  in the amount of minera l  acid in variant  B 
leads to the format ion of side product  hexapyrrodiene 12b. In addition, at high HBr concentrat ions,  co-  
p roporphyr in  K is formed in considerable  quantities along with diacetyldeuteroporphyrin  IX [27]. The 
cycl izat ion of bilene 10a (R 2 =R 3 =Act un~ler the usual conditions gives the copper complex of diacetyl-  
deuteroporphyr in  IX in 9.5% yield. 

Mesoporphyrin  IX is the t radi t ional  subject in the development of new methods for  the preparat ion 
of porphyrins  [53-55]. We also accomplished the synthesis  of this compound [35, 52]. Because of the 
difficulty involved in the preparat ion of dipyrrolylmethane 6b ( R  2 = R  3 = Et), we checked only variant  A. A 
pecul iar i ty  in the synthesis  in this case was the fact that ~-carboxydipyr ro ly lmethane  was used in the r e -  
action. Considerable quantities of minera l  acid were  neces sa ry  to effect decarboxylat ion.  This led to the 
formation of hexapyrrodiene 12e. We were  able to reduce this react ion to a minimum by using acetic acid 
as  the solvent. The reasons  for such a specific effect of acetic acid are  as yet unclear .  Mesoporphyrtn 
IX was obtained in 26% yield as a resu l t  of closing of the bilene [35]. 

The method under examination for  the preparat ion of porphyr~ns was also used for the synthesis  of 
the  porphyrin  mos t  widespread in nature - protoporphyrin  IX [28]. Acrylic  acid was used as the p r e c u r s o r  
of the vinyl group. A number  of pyr ro les  and dipyrrolylmethanes  with acry l ic  acid res idues  was synthe- 
s ized [56]. Unsymmetr ica l  d ipyrrolylmethane 6 (R 1 = COOH, R 2 = R 3 = C H  = CHCOOH) under decarboxylation 
gave a mixture  of two compounds,  v[z., 6a (R 2 =R3=CH = CHCOOH and R2=R3=Ctt=CH2 }, which were used, 
without separat ion,  for the synthesis of the porphyrin.  The condensation of the dipyrrolylmethanes  was 
ca r r i ed  out in methanol with a considerable  excess of HBr. The format ion of the bilene was monitored 
spect rophotometr ica l ly ,  after which it was cyclized to the porphyrin.  As a resul t  we obtained pro topor-  
phyrin IX in ~ 5% yield, as well as another porphyrin,  which was found to be deuteroporphyrin  IX - 2 ,4-di-  
(2-hydroxypropionic acid} (6.7%). 

The lat ter  compound [57] is the biogenetic p r ecu r so r  of protoporphyrin  IX. We real ized the conver-  
sion of deuteroporphyr in  IX - 2 ,4-di(2-hydroxypropionic acid} - to protoporphyrin  IX. With allowance for 
this t r ans fo rmat ion  and the fact that  the yields of the porphyrins were calculated not on the basis of s ta r t -  
ing dipyrrolylmethane 6a but ra ther  on the basis of its carboxylic acid, the yield of protoporphyrin  IX 
should be considered to be sa t i s fac tory .  

In conclusion let us say a few words regarding  the side react ions that occur  during the synthesis of 
porphyrins through b i l -b-enes ,  above all, the format ion of hexapyrrodienes.  In o rder  to study these com-  
pounds and their  convers ion to porphyrins  we real ized the specific synthesis of a number  of hexapyrrodi-  
enes (12a-e). The yields of these compounds usually exceed 90%. Heating the hexapyrrodienes  in meth-  
anol with acetic acid in the presence  of copper  acetate leads to various porphyrins .  When eleetronegative 
substituents are  present  in the ex t reme pyrro le  rings, meso-pyr ro ly lporphyr ins  are  formed [34]; meso -  
unsubstituted porphyrins are fo rmed when substituents of this type are  absent [35, 58], and porphyrin- l ike 
compounds,  the s t ruc ture  of which has not been definitively ascertained,  a re  formed when e l ec t ron -ac -  
ceptor  groups are  present  in the two ext reme pyr ro le  r ings.  The f irs t  type of cyclizat ion of hexapyrrodi -  
enes under different conditions was descr ibed by Clezy and Liepa [59]. Cyclization of 12a leads to ~-(2 ,4-  
d imethy l -3 -aee ty l -5 -pyr ro ly l}mesoporphyr in  III (14a), and mesoporphyr in  III (14b) is also formed in small  
amounts [34]. The presence  of these compounds in the react ion mixture markedly  hinders the isolation and 
purification of the principal  porphyrin  formed from the bilene, and the format ion of a hexapyrrodiene dur-  
ing the synthesis  of the bilene is therefore  extremely undesirable.  The cyclization of hexapyrrodiene 12e 
leads to mesoporphyr in  HI (14b) in 65% yield [35]. 

a R 1 - C2H 5 ) R 2 = 7 
"N" CH3 
H 

2 ,4-d imethy l -3  -ace ty l -5-pyrro ly l  

b R ! "- C2H 5 ,~ R ? = H 

CH3OzC ~ R~ 

CH 3 CH 3 

:4 a, b 

Coproporphyrin II is formed as a side product when there is an electronegat ive substituent in the A 
r ing of the unsymmet r i ca l  dipyrrolylmethane and the minera l  acid concentrat ion is high [27, 46]. 

In concluding this section, it would be desirable  to state some fundamental observat ions.  
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1. The uti l izat ion of the method is  expedient for  the synthes i s  of porphyrins  of  the protoporphyrin 
IX type in v iew of the acces s ib i l i t y  of  the start ing pyrro les  and d ipyrro ly lmethanes .  

2. The method makes  it poss ib le  to synthes ize  porphyrins with both e l ec tron-donor  and e l e c t r o n -  
acceptor  subst i tuents .  

3. Of the two variants  for the synthes i s  of the bi lene,  better re su l t s  are obtained when an u n s y m -  
m e t r i c a l  formyld ipyrro ly lmethane  is used.  In this  case  the yield of the hexapyrrodiene  side product is a 
m i n i m u m .  The format ion  of the latter a l so  is  reduced When e x c e s s  s y m m e t r i c a l  d ipyrroly lmethane  is used.  
When a s y m m e t r i c a l  dt formyldipyrroly lmethane  is  used,  it is better to use the carboxyl ic  acid form of the 
second component .  In this  case  one can a l so  avoid the format ion  of the hexapyrrodiene .  This  is  appar- 
ently as soc ia ted  with the low rate of  decarboxylat ion of the d ipyrro ly lmethanecarboxyl ic  acid, as a c o n s e -  
quence of which the chief  react ion proceeds  pract ical ly  when a large e x c e s s  of the s y m m e t r i c a l  c o m p o -  
nent is present .  

4. The cyc l i zat ion  of b i l - b - e n e s  proceeds  s u c c e s s f u l l y  in a mixture  of methanol  and acet ic  acid, 
and 1 - m e t h y l - 1 9 - f o r m y l b i l e n e s  undergo c lo sure  m o r e  readi ly  than the corresponding  19-unsubst i tuted 
b i lenes .  

S y n t h e s i s  o f  P o r p h y r i n s  t h r o u g h  B i l a - a , c - d i e n e s  

Continuing our s e a r c h  for new methods  for the preparation of u n s y m m e t r i c a l  porphyrins and con-  
s ider ing  that for m o s t  natural compounds these  methods  should include the use  of  the readi ly  a c c e s s i b l e  
dipyrroly lmethane 2, we  developed a new method for the synthes i s  of porphyrins through b t la -a , c -d i enes  
[60, 61]. The method includes  the preparat ion of 1 - m e t h y l - i 4 - u n s u b s t i t u t e d  t r i p y r r e n e - a  (16), convers ion  
of it to bi ladiene 18, and cyc l i za t ion  of the latter to porphyrin 19. The key  moment  in the synthes i s  of  the 
porphyrin is the step involving the preparat ion of the tr ipyrrene .  As in the synthes i s  of b i l - b - e n e s ,  in the 
condensat ion of f ormylpyrro l e s  15 with s y m m e t r i c a l  d ipyrroly lmethane  2a, one m a y  observe ,  in addition 
to the format ion  of the tr ipyrrene ,  a side react ion  leading to a s y m m e t r i c a l  bi ladiene.  We chose  condi-  
t ions that made it poss ib le  to pract ica l ly  exclude the format ion  of the bi ladiene [62]. These  condit ions in- 
clude the use  of aprotic  so lvents ,  v igorous  s t i rr ing  of the react ion  mixture ,  and s low addition of s t o i c h i o m e t -  
ric amounts  of the minera l  acid.  The development  of the tr ipyrrene  s tructure  during the addit ion of a 
m o l e c u l e  of  pyrrole  15a to dipyrroly lmethane 2a leads to partial  deactivation of the second  a posit ion.  
This  is the reason  for  the fact that addition of a second formylpyrro le  mo lecu l e  is not observed  at low 
minera l  acid concentrat ions .  The yield of 1 - m e t h y l - 1 4 H - t r i p y r r e n e s  r e a c h e s  95%. 

We also  studied the poss ibi l i ty  of  the preparation of t r ipyrrenes  f rom ~ , a ' - d i f o r m y l d i p y r r o l y l m e t h -  
ane 2b and a-unsubst i tuted  pyrro les  15b. In this  case  the addition of the f irs t  pyrro le  mo lecu l e  does  not 

TABLE 2. Porphyrins  Obtained through Bi ladienes*  

..... Starting biladiene 18 
Porphyr/n R' R -~ R ~ R ~ Yield ,  % 

Mesoporphyrin IX 

Mesoporphyrin III 
Coproporptiyrin i I I  

2 - (2 -Ca rbome thoxye th )~ l ) -4 -  
m e t h y l d  eut eroporphyr in  IX 

2 - Ethyld cut eroporphyrin IX 
4-Methyldeuteroporl~hyrin IX 
2 -Ethyla euteroporphyrm III  
Deuteroporphyrin IX 
2 -Ethyl  -3 -(2 - d i e t h y l a m i n o e t h y l )  - 

deu te roporphyr in  III  
2 - A c e t y l - 4 - m e t h y l d e u t e r o -  

porphyrin IX 

2 - g t h o x y c a r b o n y l - 3 - e t h y l -  
deu te roporphyr in  III  

2 - E t h y l - 4 - e t h o x y e a r b o n y l -  
deu fe roporphydn  IX - 

�9 2-Cyano-4-methyld eutero- 
pofphyrin IX - 

2 -Ethoxycarbony1-4  - m e t h y l  - 
deu te roporphyr in  IX 

Et 
Et 

EI 
)3Ie 
)Bit' 

)3[e 

:t 
H 
H 
H 
CH~CH2NEt~ 

Me 
Ac 

Et 
CO2Et 

Et 

CN 

CO2Et 

3Ie 
Me 

Et 
Me 
Me 

Me 

Me 
51c 
EI 
5~c 
EI 

Ac 
Me 

CO2Et 
Et  

Me 

Me 

Me 

Et 
Et 

Me 
p~I~, 
p3I t ,  

:\ ' le 

I 
~'vlc 
3le 
I 
Me 

3Ie 
Me 

Me 
Me 

CO~Et 

Me 

Me 

H 
COOH 

COOH 

H 

H 
1 
H 

I 

H 

H 

* All of  the compounds w e r e  obtained as the d imethyl  e s t e r s .  

91 
72 

86 
76 
53 

82 

67 
30 
76 
30 
51 

61 
41 

69 
32 

41 

56 

63 
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hinder  
pur i ty  [63]. 

CH~ ~ CMO 
" '" ( H )  

subsequent react ion,  and, as a resul t ,  t r i p y r r e n e  16b contains a s y m m e t r i c a l  

CH 3 P P CH 3 

( r (OC)  H H (C ) 

H L 15 a, b 2 a, b 

Br- 
16a,  b | 

] 

R ~ c~ .  CH. P ~' P CH3 R~ R2 

H H H H 1 8 a - c  2BF- 

R1 1 R2 

P P 
19 

R 3 R 2 

H O C ' ~ R  4 
H 

t7 

f8 a R4=H 
b R4: [  r 
C R4 : C O O H  

biladiene ira-  

T r i p y r r e n e - a  20 and t r i p y r r e n e - b  21 were  synthes ized in o rde r  to study the reac t iv i t i e s  of i somer i c  
t r i p y r r e n e s  [64]. It was  shown that the 14 posit ion in t r i p y r r e n e - b  is marked ly  deact ivated,  and compounds 
of this so r t  give bi ladlenes only under s eve re  conditions.  

C H k ~ c H  3 C t-'t 3 CH 3 C H 3 CH 3 CH 3 CH 3 CH 3 CH 3 CH 3 CH.~ 

H H H Br-- H H H Br- 

20 21 

We the re fo re  p r epa red  1,14-unsubst i tuted t r i p y r e n e - a  22, which, in some cases ,  made it possible  to 
s impl i fy  the synthes is  o f  the porphyr ins  [65, 66]. 

C ~ C  H 3 

h H H Br- 

22 

The condensat ion of t r i p y r r e n e - a  16a with f o r m y l p y r r o l e s  17 makes  it possible  to obtain bi ladienes 
18a-c  containing hydrogen or  iodo or  carboxyl  groups in the 19 posit ion in up to 96% yields .  

The cycl iza t ion of bi ladienes to porphyr ins  (Table 2) is accompl ished  in o-dichlorobenzene;  it is bes t  
to use iodine as the oxidizing agent in this case  [63], whereas  it is bes t  to use a mix ture  of iodine and b ro -  
mine in the synthes is  of porphyr ins  with e l e c t ron -accep to r  groups [66]. Higher yields a r e  obtained for  
porphyr ins  with e lec t ron-donor  subst i tuents .  Porphyr ins  with one/3 -unsubst i tu ted posit ion a re  obtained in 
somewhat  poore r  y ie lds .  The p r e s ence  of two fi -unsubst i tu ted posit ions in the biladiene hinders  cyc i iza-  
t ion even m o r e .  Thus, in the well-known Johnson method the yield of deuteroporphyr in  IX f rom 1 :me thy l -  
19-bromobi ladiene  was 9.7% [67]. We synthes ized this porphyr in  in 30% yield [63]. A porphyr in  contain- 
ing a/~ -d ie thylaminoethyl  group, which was proposed in our labora tory  for  the p repa ra t ion  of vinylpor-  
phyr ins  [68-71], was also synthesized.  The cycl izat ion of 1 -methy l -19-ca rboxyb i l ad ienes  proceeds  with 
somewhat  g r e a t e r  difficulty than the cycl izat ion of 19H-biladienes;  however ,  consider ing that bi ladienes 
of  this so r t  a re  m o r e  access ib le  in a number  of cases ,  this method also is worthy of attention. 

It is well  known that the synthes is  of porphyr ins  with e lee t ronegat ive  subst i tuents  in the ring may  
proceed  ambiguous ly  [72]. Each newly proposed method should t h e r e f o r e  be checked for  the synthes is  not 
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only of porphyr ins  with e lec t ron-donor  groups but also of those  with e l e c t ron -accep to r  groups.  We have 
synthesized porphyr ins  with e s t e r ,  acetyl ,  and ni tr i le  groups .  In this case  we obse rved  that the posit ion 
of the substi tuent in the biladiene has a pronounced effect  on the yield of the porphyrin .  When the re  is a 
subst i tuent  in the 2 position, the yield of the porphyr in  is lower by a fac tor  of 1.5-2 than when there  is a 
subst i tuent  in the 18 posit ion [65]. It was found that the degree  of convers ion  of 2-subs t i tu ted  bi ladienes 
to porphyr ins  can be  inc reased  if a smal l  amount of b romine  is used toge ther  with iodine as the oxidizing 
agent [66]. Thus,  the yield of porphyr in  19 (R 1 =CN, R 2 =R 3 =Me) i nc reases  f r o m  22 to 56%. The la t ter  
c i r cums tance  is ex t r eme ly  advantageous,  inasmuch as it makes  it possible  to work  with a m o r e  access ib le  
bitadiene of the f i r s t  type.  

The poss ibi l i t ies  of the method were  thoroughly demons t ra ted  in the case  of a m o r e  complex  po r -  
p h y r i n -  2 - (1 -oxohexadecy l ) -4 -methy ldeu te roporphyr in  IX [66]. The synthes is  of this compound was a s -  
socia ted with r e s e a r c h  on heme a and, in par t icu la r ,  with the p rob lem of the incorporat ion of an unsa t -  
ura ted  alcohol res idue  in the porphyr in  molecule .  The py r ro l e s  n e c e s s a r y  for  the synthes is  were  ob- 
tained by F r i e d e l - C r a f t s  acylat ion of 2 ,4 -d ime thy l -5 -ca rbe thoxypyr ro l e  [32]. However,  this method is 
not suitable for  unsaturated subst i tuents .  We the re fo re  developed a different  method [73]. The yield of 
py r ro l e  23a was 39%. 

~ N  CH3 COCH2COOCH3 

ClCOCH2COOCH3/SnCIt, ~, ~ . . . .  RBr ~C2H5ONQ 

C2H502C CH 3 C2H502C N CH 3 
H H 

CH 3 COCHCOOCH~ 
R 

C2H sOtC C H 3 
H 

CH3~_~I,j ~COCH2R ~ O C H 2 R  
,, ~ POCI 3 ~ DMF 

lib 
CH 3 HOC N CH3 

H H 
23 a 22 b 

A mix tu re  of iodine and bromine  has also been used for  the cycl izat ion of a biladiene; this made it 
poss ib le  to r a i s e  the yield f r o m  35 to 78% [66]. 

Thus,  our method for  the s tepwise synthesis  of porphyr ins  through t r i p y r r e n e s  and bi ladienes  makes  
it poss ible  to obtain porphyr ins  with both e lec t ron-donor  and e l ec t ron -accep to r  subst i tuents  in high yie lds .  
The low number  of synthes is  s teps,  the s impl ic i ty  of ca r ry ing  out the react ion,  and the high yields in each 
of the th ree  s teps  make it poss ible  to suppose that this method is today the mos t  convenient method fo r  the 
synthesis  of porphyr ins  containing at least  one s y m m e t r i c a l  d ipyr ro le  s t ruc tu re .  

S y n t h e s i s  o f  N e w  T y p e s  o f  L i n e a r  P o l y p y r r o l e  C o m p o u n d s  

In o rde r  to study the r eac t iv i t i e s  of t r i p y r r e n e s  and the side reac t ions  that occur  during the syn-  
thes i s  of bi ladienes,  we synthesized a number  of l inear  penta- ,  hexa- ,  and oc tapyr ro le  compounds with 

C-H: CH~ CH. P P CH 3 CH~ P ,o CH~ L ~ a j / , J 

H H H H H 2 BP 2< 

H H H 25 H H H 2 BP-- 

C2H~ CH 3 CH 3 P P CH 3 CH 3 P P CH 3 CH 3 C2~ A 

. , CH3 
H H H 26 H H H 3Sr- 

C2H 5 CH~ CH 3 P P CH~ CH 3 P P CH-~ CH-~ P P CH 3 CH.~ C2H S 

H H H ,~ H H H 4 I~ p~- 
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m e t h y l e n e - s e p a r a t e d  d ipyr ro ly lmethene  s t ruc tu re s  f r o m  d ipyr ro ly lmethanes  2a,b and t r i p y r r e n e s  16a,b 
[74, 75]. Compounds 24, 26, 27 a re  f o r m e d  in a lmos t  quanti tat ive yields,  and hexapyrrodiene  25 is f o rmed  
in 85% yield.  Despi te  the p r e s ence  of a -unsubs t i tu t ed  posit ions,  penta-  and hexapyr rod ienes  24 and 25 do 
not undergo fu r the r  r eac t ion  with fo rm y l  de r iva t ives .  This  sor t  of deact ivat ion is evidently due to the p r e s -  
ence of a bi ladiene s t r u c t u r e  in these  compounds.  

The chief  r eac t ion  in the p repa ra t ion  of po lypyrro le  compounds is r eac t ion  of f o rmy l -  and a - u n -  
subst i tuted p y r r o l e s .  A study of this reac t ion  in the case  of ca rbe thoxy-subs t i tu ted  f o r m y l p y r r o l e s  made 
it poss ib le  to conclude that its o c c u r r e n c e  through a d ipyr ro ly lea rb ino l  [76] or  immedia te ly  to give the di-  
py r ro ly lme thene  [77] is a s soc ia ted  with the abil i ty of f o r m y l p y r r o l e s  to undergo protonation [78]. The di-  
py r ro ly lme thene  is f o rm ed  by protonat ion of the aldehyde, bypass ing  the d ipyr ro ly lca rb ino l  s tep.  On the 
o ther  hand, the unprotonated f o r m  of the f o r m y l p y r r o l e  gives the d ipyrro ly learb inol ,  which is then con- 
ve r t ed  to the d ipyr ro ly lmethene .  The reac t ions  that p roceed  through d ipyr ro ly lca rb ino ls  m a y  give branched 
t r i p y r r o l y l m e t h a n e s  [79, 80], which often lead to a mix tu re  of d ipy r ro ly lme thenes  [81]. In those cases  
where  the d ipyr ro ly lca rb ino l  is not fo rmed,  the reac t ion  proceeds  speci f ica l ly .  

A study of the m a s s - s p e c t r o m e t r i c  behavior  of po lypyrro le  compounds and p r i m a r i l y  t r i p y r r e n e s  
revea led  a number  of in te res t ing  f ea tu res  [82]. Whereas  p rac t i ca l ly  individual m a s s  spec t r a  a r e  obtained 
for  the t r i p y r r e n e s  up to 100 ~ above 250 ~ the spec t r a  of the porphyr ins  a re  obse rved  as a resu l t  of t h e r m a l  
cycl izat ion.  The bi ladienes  behave s imi l a r l y .  

S y n t h e s e s  o f  A c e t y l -  a n d  F o r m y l - S u b s t i t u t e d  

p o r p h y r i n s  t h r o u g h  1 , 1 9 - D i m e t h y l b [ l a d i e n e s  

In o r d e r  to study the i r  spec t r a l  and var ious  phys icochemica l  p rope r t i e s  we synthes ized mono-  and 
d iace ty ldeu te roporphyr ins  III and IX. Symmet r i ca l  d iace ty ldeuteroporphyr in  HI (29) was obtained by cy-  
c l izat ion of 1 ,19-dimethylbi ladiene (28) under  conditions s im i l a r  to those  in the synthes is  of porphyr ins  
through b i l - b - e n e s  [83]. f i - m e s o - ( 2 , 4 - D i m e t h y l - 3 - a c e t y l - 5 - p y r r o l y l ) c o p r o p o r p h y r i n  II (30) was isolated 
f r o m  the reac t ion  mix tu re  along with 29 [84]~ In con t ras t  to hexapyr rod ienes ,  the convers ion  of bi ladienes 
to m e s o - p y r r o l y l p o r p h y r i n s  was noted for  the f i r s t  t ime .  The PMR, IR, and e lec t ronic  spec t r a  and the 
m a s s - s p e c t r o m e t r i c  behav ior  of m e s o - p y r r o l y l - s u b s t i t u t e d  porphyr ins  were  examined in [85]. 

Ac Ac Ac Ac P P 

c"3--~"T "TIi~-c.3 c~ "3 c~- 

h # 2Br" p p p p 
28 29 30 

A group of ace ty lporphyr ins  (31-33) was a lso  obtained by F r i e d e l - C r a f t s  acylat ion of copper  c o m -  
plexes of deu te roporphyr ins  HI and IX. The mos t  in teres t ing  compounds proved to be the m e s o - a c e t y l  
de r iva t ives  [86, 87]. The poss ib i l i ty  of introduction of an acetyl  group in the meso posit ion of the porphyr in  
r ing has not been prev ious ly  noted [88]. We were  able to isolate  a - m e s o - a c e t y l d e u t e r o p o r p h y r i n  III (32) 
and a -  and f l - m e s o - a c e t y l d e u t e r o p o r p h y r i n s  IX (33a,b). 

A t. H AC R 1 CH 3 

P P P O P P 
3! 32 33 a, b 

33<2 R~=AC~,R2=H ; b R I = H ~ R 2 = A c  

We obtained the s ta r t ing  a c e t y l f o r m y l p y r r o l e s  for  the synthesis  of bi ladienes by V i l s m e i e r - H a a c k  
formyla t ion .  It was  obse rved  that  py r ro ly l ace ty l ene  36 is fo rmed  along with py r ro l e  35 under  these  condi- 
t ions [89]. 
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CH 3 Ac CH 3 AC 

R HOC R "i- 
H H HOC I~ 

34 a, b 35 a, b H 
a R:H  ; b R:CH 3 3Ga, b 

The reac t ion  evidently includes a t tack  on the acetyl  group in the enol fo rm [90] by phosphorus oxychlor ide 
to give an ~ -ch lo rov iny l  der ivat ive ,  which is dehydrohalogenated by alkal i  to py r ro le  36. 

A reac t ion  tha t  occu r s  during the oxidative reac t ion  of 1 ,19-dimethylbi ladiene (in which the re  a re  
no subst i tuents  in the 1 and 18 posit ions),  which we obse rved  in [91, 92], s e e m s  of cons iderable  in te res t .  
Biladienes 37a,b gave fo rmylporphyr ins  38a,b in yields on the o rde r  of 15% when they were  heated in DMF 
in the p re sence  of copper  chlor ide .  

H R CHO R 

P P P P 

37 a, b 38 a, b 
37t38 a R=H ",,b R=C2H 5 

The use of lead dioxide made  it poss ible  to r a i s e  the yield in the case  of biladiene 37a to 30%. It has 
been a s sumed  [91] that the f o r m y l  group is f o r med  through r e a r r a n g e m e n t  and oxidation of one of the t e r -  
minal  methyl  groups .  

The poss ibi l i ty  of the p repa ra t ion  of fo rmylporphyr ins  d i rec t ly  by cycl iza t ion of biladiene opens up 
new prospec t s  in connection with r e s e a r c h  on porphyr in  a and re la ted  compounds~ 

A compar i son  of methods for  the synthes is  of porphyr ins  through b i l - b - enes  and b i l a - a , c -d i enes  
shows that, in mos t  cases ,  the second method leads to be t t e r  resu l t s ;  however,  it is m o r e  expedient to use 
the f i r s t  method in the synthes is  of porphyr ins  with e lec t ronegat ive  subst i tuents  in the 4 posit ion.  
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